		SINTEF RAPPO	ORT		
	NTEF	TITTEL			
SINTEF Fiskeri Fiskeriteknologi	og havbruk AS	Strømkrefter på iletau.			
Postadresse: 7465 Trondheim Besøksadresse: SINTEF, Forskningssenteret på Rotvoll Arkitekt Ebbellsvei 10 Telefon: 73 59 56 50					
Telefaks: 73 59 56 6	60	FORFATTER(E)			
E-post: <u>fish@sintef.no</u> Internet: <u>www.fish.sintef.no</u>		Birger Enerhaug			
Foretaksregisteret: N	IO 980 478 270 MVA	OPPDRAGSGIVER(E)			
		Fiskeridirektoratet			
RAPPORTNR.	GRADERING	OPPDRAGSGIVERS REF.			
STF80 A043035	Åpen	Gjermund Langedal			
GRADER. DENNE SIDE	ISBN	PROSJEKTNR.	ANTALL SIDER OG BILAG		
	82-14-03324-1	830119	41+4		
ELEKTRONISK ARKIVKODE		PROSJEKTLEDER (NAVN, SIGN.)			
SINTEF RAPPORT2_2.doc		Birger Enerhaug Egil Lien	1 Am		
ARKIVKODE	DATO	GODKJENT AV (NAVN, STILLING, SIGN.)			
	2003-09-09	Håvard Røsvik, Forskningssjef	Kouily.		
			Ļ		

SAMMENDRAG

Rapportens første del behandler en serie forsøk utført i strømningstanken i Hirtshals, Danmark. Hensikten med forsøkene var å bestemme hydrodynamiske krefter på ulike komponenter til iletau og garn. Resultatene omfatter data for strømkreftene på en A3 blåse ved ulike strømhastigheter og neddykking, - strømkreftene for et notstykke, - samt strømkreftene på et flettet og et 3-slått tau. Informasjonen om strømkreftene er videre benyttet til å bestemme hvilke lastmodeller som bør benyttes for de to tautypene.

Med bakgrunn i forsøksresultatene er det foretatt teoretiske beregninger av hvordan 5 forskjellige strømhastigheter påvirker fasong og krefter til 6 ulike iletau ved forskjellige kombinasjoner av iletaulengder og dyp. Resultatene fra beregningene er sammenfattet og drøftet med hensyn til hvordan de undersøkte parametrene påvirker følgende forhold:

- strekkbelastninger i iletauene
- nødvendig oppdrift for å unngå at blåser/fløyt trekkes ned av strøm
- belastninger på dregger / anker
- betydningen av synketauets lengde.

STIKKORD	NORSK	ENGELSK
GRUPPE 1	Hydrodynamikk	Hydrodynamics
GRUPPE 2	Forsøk	Tests
EGENVALGTE	Kabelsystem	Cable systems
	Iletau	Dan lines

INNHOLDSFORTEGNELSE

1	BA	KGRUN	NN	3
2	FO	RSØK I	I STRØMNINGSTANK	4
	2.1	Innledr	ning	4
	2.2	Gjenno	omføring	5
		2.2.1	Test av 60" (A-3) blåse	5
		2.2.2	Test av garnstykke	6
		2.2.3	Test av flytetau og flyteline	8
	2.3	Forsøk	sresultater	9
		2.3.1	Strømkrefter på blåse	9
		2.3.2	Strømkrefter på garn	10
		2.3.3	Strømkrefter på tau	
	2.4	Diskus	sjon og konklusjoner	14
		2.4.1	Strømkrefter på blåse	14
		2.4.2	Strømkrefter på garn	15
		2.4.3	Strømkrefter på tau	16
3	STI	RØMKI	REFTER ΡΔ Π.ΕΤΔΙΙ	22
J	31	Iletau		22
	5.1	3 1 1	Tauenes mekaniske egenskaper	22
	3.2	Varian	iter av iler	24
	3.3	Beregn	ningsprosedvre	26
	0.0	3.3.1	Program	
		3.3.2	Hydrodynamiske laster	
		3.3.3	Koordinatsystem	
		3.3.4	Fysiske enheter og konstanter	
	3.4	Beregn	ningsresultater	
		3.4.1	Iletau 1	
		3.4.2	Iletau 2	
		3.4.3	Iletau 3	
		3.4.4	Iletau 4	
	3.5	Diskus	sjon og konklusjoner	
		3.5.1	Strekkbelastninger	
		3.5.2	Nødvendig oppdrift til blåser og kuler	
		3.5.3	Belastning på dregger og anker	
		3.5.4	Lengde av synketau	40
4	RE	FERAN	VSER	41
An	nend	ix		42
- - P	renu			

🖲 SINTEF

1 BAKGRUNN

I august 2003 ble det inngått en avtale mellom Fiskeridirektoratet og SINTEF Fiskeri og havbruk (SFH) om at SFH skulle gjennomføre et prosjekt for å utrede årsakene til tap av garn og såkalt "ghost fishing". I beskrivelsen av problemstillingene rundt tap av garn blir styrken til redskapskomponenter og strømforhold ansett som viktige årsaker til at garn går tapt.

Følgende målsetting er angitt for prosjektet:

- 1. Utvikle anbefalinger til dimensjonering, styrke og holdbarhet for materialer brukt i garnsystem. Anbefalingene skal også omfatte prosedyrer vedrørende vedlikehold.
- 2. Fremskaffe tabeller som gir anbefalinger vedrørende sammenhenger mellom lengder på iletau, dreggstørrelser, oppdrift, dyp og strømforhold.

Den foreliggende rapport beskriver bakgrunn og gjennomføring av en serie teoretiske beregninger for å fremskaffe de nødvendige bakgrunnsdata i henhold til målsettingene. I tilknytning til disse studiene er det også utført laboratorieforsøk med redskapskomponenter i strømningstanken i Hirtshals for å bestemme komponentenes hydrodynamiske egenskaper.

🖲 SINTEF

2 FORSØK I STRØMNINGSTANK

2.1 Innledning

Som et ledd i arbeidet med å øke kunnskapen om strømkrefter på iletau, ble det i dagene 3. - 5. september, 2003, utført forsøk i strømningstanken i Hirtshals, Danmark for å dokumentere hvilke strømkrefter som virker på blåser, iletau og garn.

Det ble utført tre serier med forsøk:

- Måling av motstand til en 60" A3 blåse ved forskjellige belastninger (nedsynkninger) og strømhastigheter.
- Måling av motstand til et stykke garn i forskjellige strømhastigheter og helning i forhold til strømretningen. Garnstykket var montert med flyteline, synkeline og brystliner.
- Måling av motstand til et 3-slått iletau og en flettet flyteline.

Strømningstanken eies av Nordsøcentret og drives av SINTEF Fiskeri og havbruk, Trondheim. Observasjonsdelen av tanken der forsøkene foregår har følgende dimensjoner: 20.0 x 8.0 x 2.7 m (LxBxD).

2.2 Gjennomføring

2.2.1 Test av 60" (A-3) blåse

Blåsen som ble testet var en standard Polyform A-3 som var blåst opp til en omkrets O = 1.54 [m] (60"). Det tilsvarer en diameter d = 0.4902 [m] som gir ca. 65 [Kp] oppdrift. Høyden = 0.62 [m] og vekten i luft er 3.1 [Kp].

Blåsen ble merket langs skjøtekanten som markerer den største diameteren til blåsen. For tydeligere å kunne se neddykkingen ble blåsen påtegnet diagonaler mellom bunn og topp med tverrstreker med 10 [cm] avstand (langs overflaten), på samme måte som lengde- og breddegrader på en globus.

Under blåsen ble det festet et ca. 1.5 [m] langt tynt tau. I enden av dette tauet ble det festet lodder for å øke nedsynkingen av blåsen. Lodd og blåse ble holdt på plass i strømmen med en hanefot av tau. I øvre ende av blåsetauet ble det festet en strekkmåler for å måle strekket i tauet. Arrangementet er vist i Fig. 1. I figuren er det også angitt hvilket aksesystem som brukes som til angivelse av posisjoner (geometri) og kraftretninger under forsøkene.

Fig. 1 Forsøksoppsett med blåse

Ved å måle strekket i tauet (*T*) like under blåsen, og vinkelen mellom tauet og vertikalen (α), kan en bestemme den effektive oppdriften til blåsen (F_Z) og den tilhørende motstanden (F_X) fra følgende uttrykk:

$$F_{\rm x} = T\sin(\alpha) \tag{1.1}$$

$$F_{z} = T\cos(\alpha) \tag{1.2}$$

Det ble testet 16 kombinasjoner av loddvekt (W) og strømhastighet (V). Kombinasjonene er vist i Tabell 1.

	y						
	Strømhastigheter						
W = 98.1 N (m = 10 kg)	0 m/s (0 knop)	0.3 m/s (0.6 knop)	0.6 m/s (1.2 knop)	0.9 m/s (1.75 knop)			
W = 294.3 N (m = 30 kg)	0 m/s (0 knop)	0.3 m/s (0.6 knop)	0.6 m/s (1.2 knop)	0.9 m/s (1.75 knop)			
W = 490.5 N (m = 50 kg)	0 m/s (0 knop)	0.3 m/s (0.6 knop)	0.6 m/s (1.2 knop)	0.9 m/s (1.75 knop)			
W = 686.7 N (m = 70 kg)	0 m/s (0 knop)	0.3 m/s (0.6 knop)	0.6 m/s (1.2 knop)	0.9 m/s (1.75 knop)			

Tabell 1Forsøkskombinasjoner

2.2.2 Test av garnstykke

For å teste motstanden og oppførselen til garn tok vi utgangspunkt i et typisk torskegarn laget av monofilament med trådtykkelse 0.55 [mm] og maskelengde = 168 [mm]. Siden vanndybden i strømningstanken er 2.70 [m] og bredden = 8.0 [m], er det ikke mulig å få et garn til å stå som normalt i tanken. Vi fikk derfor laget en bit av et garn montert på 20 [mm] flyteline og 12 [mm] blytau med brystline på begge sidene. Antall masker i høyden og lengden er henholdsvis 18½ og 36. Montert med en innfelling = 0.5 gir det en høyde = 2.69 [m] og lengde = 3.02 [m].

I endene av flytelinen og blylinen var det spleiset inn øyer. Dimensjonene til garnstykket er vist i Fig. 2 og Tabell 2. Data for garn og tau er fra leverandøren *Mørenot* v/ Arild Mathisen.

Fig. 2 Garnstykkets dimensjoner

🕥 SINTEF

Monteringstau

Tabell 2

	d (mm)	w (kg/m)	Oppdrift (N/m)	B1 (m)	B2 (m)	B3 (m)	H (m)
Flyteline	20	0.191	0.834	3.40	2.97	2.96	
Blytau	12	0.253	-1.407	3.42	2.97	2.95	
Brystline	5	0.012	0.013				2.40

Garnstykket ble oppspent med 4 liner i forkant av strømningstanken (se Fig. 3). Omtrent midtveis på hver line ble det innsatt en strekkmåler. Innfestingspunktene i søylene i fremkant av tanken ble ikke endret. Lengden av innfestingstauene ble tilpasset slik at de fikk en vinkel som ga en tilstrekkelig stor nok nøyaktig i beregningen av retningsvinkelen til hver line (= kraftretning).

Det ble kjørt to serier: En serie med like store innfestingsliner slik at garnet stod tilnærmet vertikalt i strømmen, og en hvor de to øverste linene ble slakket ut 1.5 [m]. Det ble først prøvd med en utslakking av 2.5 [m], men da ble kreftene i linen så små at vekten av strekkmåleren tynget linen ned og ødela avlesning av retningsvektoren. I den første serien ble det benyttet 3 hastigheter: 0.27, 0.57 og 0.87 [m/s]. I den andre ble det kjørt 2 hastigheter: 0.27 og 0.57 [m/s].

Fig. 3 Forsøksoppsett med et montert garnstykke

2.2.3 Test av flytetau og flyteline

Det har gjennom årene vært foreslått en rekke såkalte *hydrodynamiske lastmodeller* for å beskrive hvordan strømkreftene virker på en kabel eller tau ved forskjellige vinkler mellom kabel og strømretning. I de fleste lastmodellene inngår det to koeffisienter; en som uttrykker strømmotstanden på tvers av kabelen (C_N), og en som uttrykker friksjonskreftene på langs av kabelen (C_T). Disse koeffisientene vil variere med kabelens fasong/overflate og strømhastighet, og derfor være forskjellig for f.eks. tradisjonelt (3) slått tauverk og moderne flettet tau.

Forsøkene ble derfor i utgangspunktet lagt opp til å skulle bestemme både lastmodell og motstandskoeffisienter for slåtte tau, representert ved et 3-slått flytetau ("grønntau") med diameter = 40 mm, og flettet tau representert ved en flyteline med diameter =20 [mm].

For å kontrollere hvilke lastmodell som passet best ble det lagt opp til å teste et stykke av hver kabeltype med varierende vinkler mot strømretningen, og varierende hastighet. Et stykke av hvert tau med lengde = 1.50 [m] ble klargjort for utprøving. I strømningstanken er måleutstyret lagt opp slik at de objekter som skal testes spennes opp i liner som tar opp kreftene og holder objektet på plass. Ved å måle strekket og retning til linene, kan en ved å dekomponere kreftene og summere disse, bestemme samlede krefter i x, y og z- retning.

Flytetauet ble først rigget til med to liner som dannet en vertikal hanefot i fronten av teststykket, og to horisontale liner i bak-kant. Etter en del prøving og feiling måtte det til slutt konstateres at det ikke var mulig å gjennomføre målingene med den nøyaktigheten som riggingen krevde. Måleusikkerheten ble for stor i forhold til de kreftene som skulle måles.

En endte derfor opp med å teste en større lengde av hver av kablene. De ble montert i vannstrømmen som vist i Fig. 4. og geometrien til kabelen og strekket i hver ende ble målt. V.h.a. numeriske beregninger kan en variere lastmodell og størrelse på koeffisienter til en får et samsvar mellom kabelens form og kreftene i endene.

Det 3-slåtte flytetauet hadde en lengde = 4.6 [m] og masse = 3.3 [kg], mens den fletta flytelina var 4.5 [m] lang og hadde en masse = 0.87 [kg]. Vekt i vann er -0.62 [N/m] og -0.84 [N/m] for henholdsvis 3-slått flytetau ("Grønntau") og fletta flyteline. Negative verdier angir at oppdriften er større enn massevekten slik at linene flyter.

Flytetauet ble testet i en strømhastighet = 0.57 [m/s] (1.1 [knop]), mens flytelina ble testet i 0.57 og 0.87 [m/s] (1.7 [knop]).

Fig. 4 Forsøksoppsett med flytetau og flyteline

2.3 Forsøksresultater

2.3.1 Strømkrefter på blåse

Strømkreftene på en 60" A-3 blåse er presentert i Tabell 3 og 4, samt Fig. 5.

	V = 0.23 m/s (0.45 knop)	V = 0.54 m/s (1.05 knop)	V = 0.85 m/s (1.65 knop)
13% av kapasitet (83.5 N)	1.7	12.8	26.8
40% av kapasitet (253 N)	8.4	18.9	52.0
66% av kapasitet (421.6 N)	16.5	28.7	85.6
92% av kapasitet (586.5 N)	27.6	49.3	94.0

Tabell 3Strømkrefter (Fx) på en 60" A-3 blåse (Kraftenhet = N(ewton))

Tabell 4	<i>Effektiv oppdrift</i> (Fz) <i>i strøm til en 60" A-3 blåse (Kraftenhet = N(ewton))</i>
----------	---

	V = 0.23 m/s (0.45 knop)	V = 0.54 m/s (1.05 knop)	V = 0.85 m/s (1.65 knop)
13% av kapasitet (83.5 N)	83.4	82.8	82.6
40% av kapasitet (253 N)	253.3	251.6	247.9
66% av kapasitet (421.6 N)	421.5	418.3	407.9
92% av kapasitet (586.5 N)	585.3	583.7	575.4

Fig. 5 Motstand til en A-3 (60") blåse

2.3.2 Strømkrefter på garn

Strømkreftene på et 3 x 2.4 [m] montert garnstykke er presentert i Tabell 5. Geometrien til flyteline og blytau er vist i Tabell 6 og 7. I Fig. 6 er det gitt en grafisk fremstilling av sammenhengen mellom strømhastighet og motstanden til garnstykket.

Tuben 5	moisiana	ni monieri şu	пыукке			
Test nr.	Hastighet (m/s)	Hastighet (knop)	Motstand (N)	Merknad		
1103	0.28	0.5	13.93	Tilnærmet vertikalt garn		
1106	0.57	1.1	65.90	····· ··· ····		
1109	0.87	1.7	150.42	····· ··· ····		
1203	0.27	0.5	10.41	1.5 m lengre liner i toppen (skrått)		
1206	0.57	1.1	40.73	····· ··· ····		

 Tabell 5
 Motstand til montert garnstykke

Tabell 6	Geometri til flyteline
----------	------------------------

Test nr	Midten			SB side			BB side		
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)
1103	2.05	2.43	2.25	2.71	4.00	2.24	2.03	5.57	2.25
1106	2.15	2.40	2.27	2.73	3.99	2.18	2.12	5.58	2.25
1109	2.21	2.41	2.34	2.97	4.00	2.25	2.23	5.59	2.32
1203	3.97	2.54	1.53	4.62	4.01	1.25	3.94	5.48	1.57
1206	4.00	2.52	1.40	4.66	3.97	1.09	3.93	5.42	1.46

Tabell 7

Geometri til blytau

Test nr	BB side			Midten			SB side		
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)
1103	1.93	2.42	0.04	2.52	4.01	0.006*	1.98	5.60	0.04
1106	1.95	2.41	0.19	2.52	4.01	0.15	2.02	5.61	0.16
1109	2.01	2.38	0.32	2.68	4.01	0.35	2.06	5.63	0.29
1203	2.13	2.39	0.04	2.62	4.02	0.006*	2.19	5.65	0.04
1206	2.14	2.36	0.04	2.58	4.01	0.006*	2.18	5.65	0.04

* Hviler på bunnen

Fig. 6 Motstand til et montert garnstykke (ca. 3 x 2.4 m)

2.3.3 Strømkrefter på tau

2.3.3.1 Flytetau ("grønntau")

Strekket i endene og geometrien til flytetauet ble målt ved en strømhastighet = 0.57 [m/s] (Test nr. 3000). Strekk og tilhørende krefter i innfestingspunktene er vist i Tabell 8, mens den tilhørende geometrien er vist i Tabell 9. Kraftkomponentene er bestemt på følgende måte: Strekket i endene vil ha den samme retningen som tauet har i endene. I nedre ende bestemmes retningen ut fra gradienten mellom punkt 1 og 2. I øvre enden ble tauets fasong justert slik at retningen ble mest mulig vertikal (z-retning) med kun ubetydelige avvik i x og y-retning.

Punkt nr	Strekk (N)	Fx (N)	Fy (N)	Fz (N)
1 (Nedre ende)	10.89	10.0	-1.3	4.0
6 (Øvre ende)	4.32	0.00	0.00	-4.32

Tabell 8Krefter i flytetauets innfestningspunkter

Geometri til flytetau ("grønntau")

Punkt nr	V = 0.5	V = 0.57 m/s (Test nr 3000)			Normalisert		
T diffet in	X (cm)	Y (cm)	Z (cm)	X (m)	Y (m)	Z (m)	
1	296	546	26	0	0	0	
2	386	534	62	0.9	-0.12	0.36	
3	480	521	107	1.84	-0.25	0.81	
4	568	510	147	2.72	-0.36	1.21	
5	647	498	207	3.51	-0.48	1.81	
6	671	494	258	3.75	-0.52	2.32	

Verdier i kursiv er estimert

2.3.3.2 Flyteline

Tabell 9

Strekket i endene og geometrien til flytelina ble målt for to strømhastigheter = 0.57 [m/s] og 0.87 [m/s] (Test nr. 4006 & 4009). Strekk og tilhørende krefter i innfestingspunktene er vist i Tabell 10, mens den tilhørende geometrien er vist i Tabell 11 og 12.

	V = 0.57 m/s (Test nr 4006)			V = 0.	87 m/s (T	est nr 400	9)	
Punkt nr	Strekk (N)	Fx (N)	Fy (N)	Fz (N)	Strekk (N)	Fx (N)	Fy (N)	Fz (N)
1 (Nedre ende)	6.67	6.3	-03	2.2	15.60	14.8	-1.0	4.9
9 (Øvre ende)	3.43	0.0	0.0	-3.4	10.99	0.0	0.0	11.0

Tabell 10Krefter i flytelinas innfestningspunkter

SINTEF

Punkt nr	V = 0.57 m/s (Test nr 4006)			V = 0.87 m/s (Test nr 4009)		
	X (cm)	Y (cm)	Z (cm)	X (cm)	Y (cm)	Z (cm)
1	362	527	27	391	526	26
2	408	525	43	436	523	41
3	513	524	86	532	521	77
4	602	518	130	619	516	125
5	690	510	186	709	507	180
6	703	508	198	724	505	193
7	717	506	213	742	501	219
8	732	502	235	747	499	240
9	746	494	265	757	494	265

Tabell 11Geometri til flyteline

Verdier i kursiv er estimert

Punkt nr	V = 0.57 m/s (Test nr 4006)			V = 0.87 m/s (Test nr 4009)		
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)
1	0	0	0	0	0	0
2	0.46	-0.02	0.16	0.45	-0.03	0.15
3	1.51	-0.03	0.59	1.41	-0.05	0.51
4	2.4	-0.09	1.03	2.28	-0.10	0.99
5	3.28	-0.17	1.59	3.18	-0.19	1.54
6	3.41	-0.19	1.71	3.33	-0.21	1.67
7	3.55	-0.21	1.86	3.51	-0.25	1.93
8	3.7	-0.25	2.08	3.56	-0.27	2.14
9	3.84	-0.33	2.38	3.66	-0.32	2.39

 Tabell 12
 Geometri til flyteline(normalisert)

🕥 SINTEF

2.4 Diskusjon og konklusjoner

2.4.1 Strømkrefter på blåse

I Fig. 7 er motstanden til blåsa med 422 [N] i oppdrift (66% av max. oppdrift) sammenlignet med motstanden til en helt neddykket kule med samme diameter som blåsa. Som en ser er motstanden til blåsa mye høyere. Den er dessuten ikke proporsjonal med kvadratet av hastigheten.

Fig. 7 Sammenligning mellom motstand til blåse (66%) og en neddykket kule

Forskjellen i motstand mellom blåsa og en neddykket kule skyldes trolig at blåsa er delvis neddykket slik at det dannes bølger når vannet strømmer rundt den. Dannelse av bølger krever energi = bølgemotstand. Bølgemotstanden til et objekt varierer med hastigheten, noe som kan forklare fasongen til motstandskurven. Vi har imidlertid ikke nok data til å kunne fastlå årsaken til det spesielle forløpet som motstandskurvene til en blåse har.

Selv om motstanden til ei blåse er relativt liten, kunne det ha vært greitt om det kunne utledes en koeffisient som kunne brukes i de videre beregninger. I forhold til motstandens betydning for strekket i ilen har vi ikke funnet det verdt omkostningene å bruke tid på å bestemme en fornuftig koeffisient. I de videre beregner vil derfor de aktuelle verdiene til blåsemotstand bli brukt.

Som en vil se av Tabell 4 så reduseres den effektive, eller nyttbare oppdriften, til blåsa når den står i en strøm. Reduksjonen er bare i størrelsesorden 1 - 3 % så den kan neglisjeres.

2.4.2 Strømkrefter på garn

For å få til en testing av et garn i tilnærmet vertikal stilling, ble høyden kortet ned slik at garnstykket ble ca. 1/3 av vanlig høyde på et torskegarn. For å kunne bestemme motstanden til fks. et 50 masker høyt garn, må en trekke fra tauenes bidrag til motstanden før den skaleres opp. Dette medfører imidlertid en del problemer/vanskeligheter:

Under forsøkene så en tydelig at flytelina vibrerte kraftig. Vibrasjoner øker motstanden, men hvor mye er usikkert. Ut fra målinger og teoretiske beregninger foreslår Bourget og Marichal (1990) at en bruker verdier mellom 1.8 - 2.0 på motstandskoeffisientene. Det tilsvarer omtrent en fordobling i forhold til de måleverdiene som er registrert (se avsnitt 2.4.3) når linen ikke vibrerer.

Synkelinen vil ligge på bunnen når garnet står skrått, og ved lave hastigheter når det står vertikalt. Det betyr at synkelinen vil ligge i grensesjiktet mot bunnen. Grensesjiktet er overgangs-sonen mellom bunnen der strømhastigheten er = 0, og et stykke opp der strømmen har full hastighet. Tykkelsen på grensesjiktet vil avhenge av bunnforholdene og strømhastigheten og er derfor vanskelig å angi helt generelt. Fra studier av erosjon på grunn av strømninger rundt rørledninger på havbunnen (Brørs, 1999) ser en at det sjelden opereres med et grensesjikt som er mindre enn 20% av rørdiameteren. Når rørdiameteren er i størrelsesorden 0.40 [m], indikerer det at et synketau med diameter = 0.012 [m], må ligge i grensesjiktet og utsettes for minimale hydrodynamiske krefter. Løftes det fra bunnen, vil strømhastigheten øke og kreftene øke tilsvarende.

På grunn av den usikkerhet som er knyttet til bestemmelsen av linenes motstand, utelates en skalering av garnmotstanden. En grov skalering kan være å anta at motstanden til garnstykket er gitt som den målte totalmotstanden fratrukket motstanden til flytelina basert på en motstandskoeffisient (C_D)= 1.8.

2.4.3 Strømkrefter på tau

Tauenes fasong (geometri) i horisontal- og vertikal planet er vist i henholdsvis Fig. 8 og Fig. 9.

Som en kan se av figurene har tauene ulike fasonger i horisontalplanet, mens de er ganske like i vertikalplanet. De indikerer tydelig at det 3-slåtte flytetauet påvirkes av en annen sidekraft enn den fletta flytelina. For å beskrive de hydrodynamiske lastene på flytetauet, må en derfor benytte en lastmodell som inkluderer sidekrefter. Det fletta tauet har tydeligvis en jevn nok overflate til at en standard lastmodell for slanke fleksible rør kan benyttes.

Fig. 8 Tauenes fasong i horisontalplanet

Fig. 9 Tauenes fasong i vertikalplanet

2.4.3.1 Lastmodeller generelt

En lastmodell beskriver hvordan de hydrodynamiske kreftene på et kabelelement endrer seg fra at strømmen står normalt på elementet til den går langsetter (tangentielt). De forskjellige lastmodeller som opp gjennom årene er formulert for rør, kabler og tau, forsøker å beskrive kreftene som funksjon av motstandskoeffisientene i de to ytterpunktene og vinkelen mellom strømretning og kabelelement (angrepsvinkelen).

Kreftene deles opp i tre komponenter som enten refereres til et lokalt aksesystem som følger kabelelementet, eller et "globalt" aksesystem som ligger fast, med fks. Origo i nedre ende av tauet. I det lokale aksesystem deles kreftene inn i tre enkeltkrefter: en som virker langsetter (tangentielt) kabelelementet (\mathbf{F}_T), en som virker normalt på elementet (\mathbf{F}_N) og en kraft som virker sideveis (\mathbf{F}_S). Normalkraften (\mathbf{F}_N) ligger i planet som dannes av strømhastighetsvektoren (\mathbf{U}) og kabelelementet. Sidekraften (\mathbf{F}_S) virker normalt (vinkelrett) på det samme planet. Alternativt kan kreftene som virker i planet som dannes av hastighetsvektoren og kabelelement uttrykkes som en motstandskraft (\mathbf{D}) som virker i samme retning som vannstrømmen, og en løftkraft (\mathbf{L}) som virker normalt på vannstrømmens retning.

Disse forholdene er illustrert i Fig. 10.

Fig. 10 Hydrodynamiske krefter på et kabelelement

Skalarverdien til de tre kraftkomponentene kan beregnes av følgende uttrykk:

$$F_T = \frac{1}{2}\rho C_T dl U^2 \tag{1.3}$$

$$F_N = \frac{1}{2}\rho C_N dl U^2 \tag{1.4}$$

$$F_s = \frac{1}{2}\rho C_s dl U^2 \tag{1.5}$$

hvor

ρ	massetetthet
CT	motstandskoeffisient (tangentielt)
C_N	motstandskoeffisient (normalt)
Cs	motstandskoeffisient (sideveis)
d	diameter
1	elementlengde
U	vannstrømmens hastighet

Hensikten med forsøkene i Hirtshals var blant annet å undersøke hvilke lastmodeller som best beskriver de hydrodynamiske kreftene som virker på 3-slått og flettet tau (flyteline).

2.4.3.2 Flytetau

Etter noen innledende undersøkelser ble to alternative lastmodeller vurdert.

Den første lastmodellen var basert på eksperimentelle data fra Chubarov (1962) som er publisert av Ferro og Hou (1984). Data/modell gjelder for 3-slåtte tau/trosser:

$$C_T = (0.02 + 0.11\sin(\varphi))\cos(\varphi)^{\dagger}$$
(1.6)

$$C_N = 1.05\sin^2(\varphi) \tag{1.7}$$

$$C_s = 0.9\sin^3(\varphi)\cos(\varphi) + 0.03 \quad \diamond \tag{1.8}$$

[†] Modifisert Eames' modell [◊] Forfatterens egen kurvetilpasning til Chubarov data

Motstand/drag (D), løft(L) og sidekraft(S) kan da uttrykkes som:

$$C_D = C_N \sin(\varphi) + C_T \cos(\varphi) \tag{1.9}$$

$$C_L = C_N \cos(\varphi) - C_T \sin(\varphi) \tag{1.10}$$

$$C_s = 0.9\sin^3(\varphi)\cos(\varphi) + 0.03 \tag{1.11}$$

Den andre modellen er basert på tyske data for slåtte ståltrosser. Dataene er anskaffet gjennom personlig korrespondanse med tyske forskere. Modellen blir omtalt som "Hahlbeck's modell", og det er uvisst om den er publisert:

$$\begin{split} C_{D} &= 1.041 - 0.169 \cos(\varphi) - 4.7156 \cos^{2}(\varphi) + 10.7198 \cos^{3}(\varphi) & (1.12) \\ &- 11.26 \cos^{4}(\varphi) + 4.3988 \cos^{5}(\varphi) & (1.12) \\ C_{L} &= 0.09 + 0.8526 \cos(\varphi) - 1.1136 \cos^{2}(\varphi) + 0.2962 \cos^{3}(\varphi) & (1.13) \\ &+ 0.735 \cos^{4}(\varphi) - 0.8579 \cos^{5}(\varphi) & (1.13) \\ C_{S} &= 0.0145 + 0.0137 \cos(\varphi) + 7.6622 \cos^{2}(\varphi) - 21.3845 \cos^{3}(\varphi) & (1.14) \\ &+ 19.9055 \cos^{4}(\varphi) - 6.1898 \cos^{5}(\varphi) & (1.14) \\ \end{split}$$

Etter å ha sammenlignet beregningsresultater med de to lastmodellene med måleresultatene, er vi kommet til den konklusjonen at den lastmodellen som passer best er Hahlbeck's modell for løft og drag, og Chubarov's modell for sidekrefter.

For å få en best mulig tilpasning har det vært nødvendig å justere drag, løft og sidekraft koeffisientene (1.12, 1.13 og 1.11) med henholdsvis +4%, -8% og -57 %.

Målt og beregnet geometri til til flytetauet er vist i Fig. 11 og 12. Variasjonene for drag og løft er innenfor det som kan betraktes som måleunøyaktighet og usikkerhet i materialdata etc. Sidekraftjusteringen er imidlertid så stor at den gir uttrykk for et signifikant avvik fra den brukte lastmodellen. Konklusjonen blir derfor at Hahlbecks lastmodell brukes for drag og løft, mens vår modell basert på Chubarovs data brukes for sidekreftene med 57% redusert koeffisientverdi.

Fig. 11 Flytetau - målt og beregnet geometri i vertikalplanet

2.4.3.3 Flyteline

Siden flytelinen har et tilnærmet symmetrisk tverrsnitt og en relativt glatt overflate, ble vurderingen bare gjort mot en standard lastmodell for slanke rør som baserer seg på "Cross-flow" prinsippet:

$$C_{\tau} = \pi C_f \cos^2(\varphi) \tag{1.15}$$

$$C_N = C_d \sin^2(\varphi) \tag{1.16}$$

Lastmodellen ble vurdert ved å sjekke hvilke verdier av C_f og C_d som ga best tilpassning til målte data. Vi fant at $C_f = 0.04$ passet for begge hastigheter, og $C_d = 1.07$ og 1.05 passet for strømhastigheter på henholdsvis 0.57 og 0.87 [m/s].

Sammenligningen mellom målt og beregnet fasong for strømhastigheten = 0.87 [m/s] er vist i Fig. 12 og Fig. 13.

Fig. 13Flyteline - målt og beregnet geometri i vertikalplanet - U=0.87 [m/s]

Fig. 14 Flyteline - målt og beregnet geometri i horisontalplanet – U = 0.87 [m/s]

🕥 SINTEF

3 STRØMKREFTER PÅ ILETAU

3.1 Iletau

Ilen (engelsk: *Dan line*) er betegnelsen på linen som går fra en garnlenke eller en linestubb på bunnen, og opp til en eller flere blåser på havoverflaten. Ilen er som oftest sammensatt av flere *iletau* med forskjellige lengde, tykkelse og materialegenskaper. For å holde garnlenken eller linestubben på plass på bunnen er de forankret med enten dregg eller anker. Det er vanlig å bruke flytetau nederst og tau som synker øverst. Den innbyrdes fordelingen vil variere.

3.1.1 Tauenes mekaniske egenskaper

Flytetau er en blanding av polypropylen og polyetylen. På grunn av fargen kalles det ofte for "grønntau". Det har en egenvekt på 0.91 - 0.92 [kg/dm³]. Publiserte materialdata for flytetau levert av *AS Fiskevegn* og *Mørenot AS* er vist i henholdsvis Tabell 13 og 14.

Diameter Masse Massevolum Eff. areal Eff. diameter Bruddlast Aksialstivhet (EA)* (mm) (m^{3}/m) (m^2) (kg/m) (m) (Kp)/(N)(N) 14 0.01128 0.091 0.000100 0.000100 3600 / 35316 176580 16 0.114 0.000125 0.000125 0.01261 4400 / 43164 215820 18 0.141 0.000155 0.000155 0.01404 5400 / 52974 264870 20 0.182 0.000200 0.000200 0.01595 6600 / 64746 323730 22 0.209 0.000230 0.000230 0.01710 8000 / 78480 392400 24 0.236 0.000260 0.000260 0.01819 9100 / 89271 446355

Tabell 13 Danline (polysteel) fra AS Fiskevegn ($\rho = 0.91 \text{ kg/dm}^3$, Bruddforlengelse = 20%)

1 Kp = 9.807 N

* EA = Bruddlast / Bruddforlengelse

Tabell 14 Danline fra Mørenot AS ($\rho = 0.92 \text{ kg/dm}^3$, Bruddforlengelse = 22%)

Diameter (mm)	Masse (kg/m)	Massevolum (m ³ /m)	Eff. areal (m ²)	Eff. diameter (m)	Bruddlast (Kp) / (N)	Aksialstivhet (EA)* (N)
14	0.091	0.000099	0.000099	0.01122	3600 / 35316	160527
16	0.116	0.000126	0.000126	0.01267	4550 / 44636	202889
18	0.149	0.000162	0.000162	0.01436	5550 / 54446	247480
20	0.180	0.000195	0.000195	0.01576	6650 / 65237	296530
22	0.220	0.000240	0.000240	0.01747	8100 / 79461	361186
24	0.259	0.000282	0.000282	0.01894	9300 / 91233	414695
40	0.718	0.000781	0.000781	0.03153	24300 / 238383	1083559

rusen re	Sirrer	<i>j</i> a 115 1 <i>i</i> she i e 8	<i>n</i> (<i>p</i> 1.10 <i>n</i>	s, ann , Druadjer	207	
Diameter (mm)	Masse (kg/m)	Massevolum (m ³ /m)	Eff. areal (m ²)	Eff. diameter (m)	Bruddlast (Kp) / (N)	Aksialstivhet (EA)* (N)
10	0.057	0.000052	0.000052	0.00814	1930 / 18933	94667
12	0.079	0.000072	0.000072	0.00957	2850 / 27959	139793
14	0.109	0.000099	0.000099	0.01124	3600 / 35316	176580
16	0.136	0.000124	0.000124	0.01256	4400 / 43164	215820
18	0.177	0.000161	0.000161	0.01432	5400 / 52974	264870
20	0.218	0.000198	0.000198	0.01589	6600 / 64746	323730
1 Kp = 9.807 N * EA =			* EA = Brudd	last / Bruddforlengelse		

Materialdata for synketau fra AS Fiskevegn er vist i Tabell 15.

Tabell 15"Silver" fra AS Fiskevegn ($\rho = 1.10 \text{ kg/dm}^3$, Bruddforlengelse = 20%)

Tallverdiene som er gjengitt i tabellene vil endre seg over tid. <u>De må derfor bare tas som</u> retningsgivende størrelser.

3.2 Varianter av iler

Som nevnt tidligere vil utformingen av iler variere alt etter driftsform og hvor en befinner seg på norskekysten. I prosjektet har en kontaktet garnfiskere som driver utenfor Vesterålen og Mørekysten.

Iletau 1

Dette er en sammensetning av flyte- og synketau som benyttes utenfor Vesterålen og Andøya på 300 favner og dypere. Iletauet består av 5 forskjellige enkelt-tau (segmenter). Nummereres segmentene fra ankeret og opp, har iletauet følgende sammensetning:

Segment 1: 110 m (1 kveil)	20 mm Flytetau (3-slått)
Segment 2: 440 m (4 kveiler)	18 mm Flytetau (3-slått)
Segment 3: 440 m (4 kveiler)	16 mm Synketau (3-slått)
Segment 4: 220 m (2 kveiler)	14 mm Synketau (3-slått)
Segment 5: 110 m (1 kveil)	12 mm Synketau (3-slått)

Totalt en lengde = 1320 [m]. Materialdata for de enkelte segmentene/tauene finnes i Tabell 1 og 3.

I beregningene holdes lengden konstant mens dybden varieres slik at forholdstallet mellom lengde og dyp (L/D) = 1.5, 2.0 og 2.5.

Iletau 2

Denne utformeningen er basert på dimensjonene som ble foreslått av en arbeidsgruppe nedsatt av Fiskarlaget. Forslaget gjelder for dyp større enn 300 favner.

Segment 1:	55 m (29 favner)	22 mm Flytetau (3-slått)
Segment 2:	605 m (318 favner)	18 mm Flytetau (3-slått)
Segment 3:	660 m (347 favner)	16 mm Synketau (3-slått)

Totalt en lengde = 1320 [m]. Materialdata for de enkelte segmentene/tauene finnes i Tabell 1 og 3.

I beregningene holdes lengden konstant mens dybden varieres slik at forholdstallet mellom lengde og dyp (L / D) = 1.5, 2.0 og 2.5.

Iletau 3

Ilen består av to segmenter med varierende lengder for et dyp på 150 [favner] (285 [m]):

Segment 1: 214 / 285 / 356m	20 mm Flytetau (3-slått)
Segment 2: 214 / 285 / 356m	16 mm Synketau (3-slått)

De tre lengdene gir forholdstall mellom lengde og dyp (L / D) = 1.5, 2.0 og 2.5.

Iletau 4

Ilen består av to segmenter med varierende lengder for et dyp på 300 [favner] (570 [m]). Synketauets lengde utgjør 50% av den totale lengde:

Segment 1: 428 / 570 / 713m	20 mm Flytetau (3-slått)
Segment 2: 428 / 570 / 713m	16 mm Synketau (3-slått)

Iletau 5

Ilen består av to segmenter med varierende lengder for et dyp på 300 [favner] (570 [m]). Synketauets lengde utgjør 40% av den totale lengde:

Segment 1: 514 / 684 / 856m	20 mm Flytetau (3-slått)
Segment 2: 342 / 456 / 570m	16 mm Synketau (3-slått)

Iletau 6

Ilen består av to segmenter med varierende lengder for et dyp på 300 [favner] (570 [m]). Synketauets lengde utgjør 25% av den totale lengde:

Segment 1: 642 / 855 / 1069m 20 mm Flytetau (3-slått) Segment 2: 214 / 285 / 357m 16 mm Synketau (3-slått)

Variantene Iletau 5 og 6 er tatt med for å kunne etablere sammenhengen mellom relativ lengde av synketau og flytetauets fasong (avstand til overflate) når det ikke er strømsetting.

🕥 SINTEF

3.3 Beregningsprosedyre

3.3.1 Program

De numeriske beregningene er gjort ved hjelp av SFH sitt egenutviklete dataprogram for beregning av kabler og tau/trosser. Programmet er verifisert mot dataprogrammet *Riflex* som kan betraktes som en bransjestandard for beregning av krefter og geometri til fleksible stigerør (oljeindustrien) og kabler. Iletau 1 er brukt som case for verifiseringen. Beregningsresultatene til SFH-program og *Riflex* er samlet i en tabell i Appendix. Grunnen til at man ikke har brukt *Riflex*, er at programmet ikke har en lastmodell for sidekrefter (se neste avsnitt).

3.3.2 Hydrodynamiske laster

Det har gjennom årene vært foreslått en rekke såkalte *hydrodynamiske lastmodeller* for å beskrive hvordan strømkreftene virker på en kabel eller tau ved forskjellige vinkler mellom kabel og strømretning. I de fleste lastmodellene inngår det to koeffisienter; en som uttrykker strømmotstanden normalt på kabelen (C_N), og en som uttrykker friksjonskreftene på langs av kabelen (C_T). Disse koeffisientene vil variere med kabelens fasong/overflate og strømhastighet, og derfor være forskjellig for f.eks. tradisjonelt 3-slått tauverk og moderne flettet tau. Resultatene fra forsøkene i strømningstank bekrefter at et 3-slått flytetau også påvirkes av en sidekraft på tvers av strømretningen. For å kunne gi en riktig beskrivelse av de totale hydrodynamiske lastene på 3-slått tau, må en derfor benytte en lastmodell som inkluderer sidekrefter. Etter å ha sammenlignet forskjellige lastmodeller med måleresultatene i avsnitt 5.3 er konklusjonen at den lastmodellen som passer best er Hahlbeck's modell for løft og drag (motstand), og Chubarov's modell for sidekrefter. Hahlbecks koeffisienter benyttes uten korreksjon, mens Chubarovs sidekraftkoeffisient reduseres med 57%. Dette stemmer også godt overens med en lastmodell foreslått av Ferro og Hou (1984).

Kreftene normalt og langs en kabel kan settes sammen til to "globale" kraftkomponenter som betegnes for løft og drag (motstand). Løftkraften virker normalt på strømretningen og ligger i planet som dannes av strømvektor og kabelelement. Drag (motstand) virker i strømretningen. Sidekraften virker normalt på strømvektoren og står normalt på planet dannet av strømvektor og kabelelement. Kreftene kan uttrykkes på dimensjonsløs form med koeffisientene C_L , C_D og C_S .

Følgende uttrykk for C_L , C_D og C_S benyttes i lastmodellen:

$$C_{D} = 1.041 - 0.169 \cos(\varphi) - 4.7156 \cos^{2}(\varphi) + 10.7198 \cos^{3}(\varphi)$$
(1.17)
-11.26 \cos^{4}(\varphi) + 4.3988 \cos^{5}(\varphi)
$$C_{L} = 0.09 + 0.8526 \cos(\varphi) - 1.1136 \cos^{2}(\varphi) + 0.2962 \cos^{3}(\varphi)$$
(1.18)
+0.735 \cos^{4}(\varphi) - 0.8579 \cos^{5}(\varphi)
$$C_{s} = (0.9 \sin^{3}(\varphi) \cos(\varphi) + 0.03) \cdot 0.43$$
(1.19)

 φ = Angrepsvinkel mellom strømretning og et kabelelement

0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop
1 N	50 N	100 N	165 N	250 N

Strømlastene til blåser og kuler i toppen av ilen antas å ha følgende verdier:

3.3.3 Koordinatsystem

Koordinatsystemet legges med XY-planet på bunnen med origo i ilens nedre ende (se Fig. 1). Positiv retning for Z-aksen er oppover (mot overflaten).

Fig. 15Koordinatsystem

3.3.4 Fysiske enheter og konstanter

Størrelse	Symbol	SI-enhet		
Tid	Т	S	(sekund)	
Lengde	L	m	(meter)	
Masse	Μ	kg	(kilo)	
Kraft	F	Ν	(Newton)	
Hastighet	V	m/s		
Gravitasjonens aks.	g	m/s ²	(9.81 m/s^2)	
Massetetthet - sjøvann	ρ	kg/m ³	(1025 kg/m^3)	

Omregningstabell:

1 m	= 3.2809 ft	1 ft	= 0.3048 m
1 m	= 0.5263 favn	1 favn	= 1.9 m
1 N	= 0.10197 Kp	1 Kp	= 9.807 N
1 m/s	= 1.944 knop	1 knop	= 0.5144 m/s

3.4 Beregningsresultater

Beregninger er utført for iletau 1 - 4. For hvert iletau er resultatene presentert i tre figurer og en tabell. De to første figurene viser fasongen ved lav- og høy strømhastighet, mens den siste viser fasongen ved 5 forskjellige strømhastigheter på samme dyp. I tabellen er det gitt en oversikt over kreftene i bunn og topp av ilen for tre dyp og 5 strømhastigheter.

3.4.1 Iletau 1

Fig. 16 Fasongen til Iletau 1 (1320 m) i 0.5 knops strøm på 3 dyp

Fig. 17 Fasongen til Iletau 1 (1320 m) i 2 knops strøm på 3 dyp

Fig. 18 Fasongen til Iletau 1 (1320 m) i 5 strømhastigheter på 660 m dyp

		L	/ D = 1	.5		L / D = 2.0				L / D = 2.5					
	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop
Fb	89	322	1126	2438	4212	87	201	666	1450	2531	78	158	486	1054	1840
Fbx	1	273	1025	2250	3913	1	177	637	1405	2463	1	139	470	1034	1812
Fby	0	-37	-137	-298	-515	0	-19	-65	-145	-255	0	-13	-42	-94	-165
Fbz	89	166	446	891	1471	87	93	183	328	525	78	73	116	182	276
Ft	46	302	1077	2331	4023	41	182	619	1338	2327	38	137	437	941	1635
Ftx	1	50	100	165	250	1	50	100	165	250	1	50	100	165	250
Fty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ftz	46	298	1072	2325	4015	41	175	611	1328	2314	38	128	425	926	1616

Tabell 16Krefter i bunn (Fb) og topp(Ft) til Iletau 1 (1320 m) i 5 strømhastigheter

Fbx, Fby og Fbz er strekket i bunnen sine komponenter i x, y og z retning. Ftx, Fty og Ftz er strekket i toppen sine komponenter i x, y og z retning.

3.4.2 Iletau 2

Fig. 19 Fasongen til Iletau 2 (1320 m) i 0.5 knops strøm på 3 dyp

Fig. 20 Fasongen til Iletau 2 (1320 m) i 2 knops strøm på 3 dyp

Fig. 21 Fasongen til Iletau 2 (1320 m) i 5 strømhastigheter på 660 m dyp

		L	/ D = 1	.5		L / D = 2.0					L / D = 2.5				
	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop
Fb	107	346	1224	2659	4609	101	212	725	1591	2790	97	166	525	1156	2034
Fbx	1	291	1107	2438	4254	1	185	691	1536	2706	1	144	506	1131	1999
Fby	0	-40	-151	-329	-570	0	-20	-72	-162	-287	0	-14	-45	-103	-185
Fbz	107	183	502	1009	1678	101	103	208	381	616	97	81	132	216	328
Ft	46	313	1161	2537	4402	40	184	668	1468	2572	36	135	469	1033	1816
Ftx	1	50	100	165	250	1	50	100	165	250	1	50	100	165	250
Fty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ftz	46	309	1157	2531	4395	40	177	661	1459	2560	36	125	458	1020	1799

Tabell 17*Krefter i bunn (Fb) og topp(Ft) til Iletau 2 (1320 m) i 5 strømhastigheter.*

3.4.3 Iletau 3

Fig. 22 Fasongen til 3 lengder med Iletau3 i 0.5 knops strøm på 285 m dyp

Fig. 23 Fasongen til 3 lengder med Iletau3 i 2 knops strøm på 285 m dyp

Fig. 24 Fasongen til Iletau 3 (570 m) i 5 strømhastigheter på 285 m dyp

		L	/ D = 1	.5		L / D = 2.0				L / D = 2.5					
	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop
Fb	43	151	469	980	1707	55	120	358	763	1327	66	111	314	675	1181
Fbx	1	124	419	890	1563	1	103	339	735	1284	1	95	302	660	1160
Fby	0	-16	-56	-121	-210	0	-11	-35	-77	-135	0	-9	-26	-59	-106
Fbz	43	84	202	393	652	55	60	109	191	304	66	56	83	132	197
Ft	15	132	438	935	1619	17	99	324	697	1214	18	85	275	597	1046
Ftx	1	50	100	165	250	1	50	100	165	250	1	50	100	165	250
Fty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ftz	15	122	426	920	1600	17	85	308	677	1188	18	69	256	574	1016

3.4.4 Iletau 4

Fig. 25 Fasongen til 3 lengder med Iletau4 i 0.5 knops strøm på 570 m dyp

Fig. 26 Fasongen til 3 lengder med Iletau4 i 2 knops strøm på 570 m dyp

Fig. 27 Fasongen til Iletau 4 (1140 m) i 5 strømhastigheter på 570 m dyp

		L	/ D = 1	.5		L / D = 2.0				L / D = 2.5					
	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop	0 knop	0.5 knop	1.0 knop	1.5 knop	2.0 knop
Fb	87	248	843	1823	3163	109	194	358	1412	2476	132	185	562	1250	2210
Fbx	1	206	760	1670	2918	1	166	339	1363	2403	1	157	540	1222	2172
Fby	0	-28	-103	-225	-390	0	-19	-35	-142	-251	0	-17	-47	-110	-198
Fbz	87	136	349	694	1156	109	100	109	339	542	132	97	150	238	355
⊢t	29	214	788	1726	3006	33	155	324	1291	2270	37	133	490	1105	1958
Ftx	1	50	100	165	250	1	50	100	165	250	1	50	100	165	250
Fty	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ftz	29	208	781	1718	2996	33	147	308	1281	2256	37	124	480	1093	1942

 Tabell 19
 Krefter i bunn (Fb) og topp(Ft) til 3 lengder med Iletau4, 570 m dyp og 5 strømhastigheter

🕥 SINTEF

3.5 Diskusjon og konklusjoner

3.5.1 Strekkbelastninger

Fra tabellene 16-19 ser en at strekkbelastningene fra strømkreftene er omtrent like store i bunn (Fb) og topp (Ft). I forhold til bruddlastene som er oppgitt i Tabell 13, 14 og 15, er imidlertid de beregnete strekkverdiene små. Selv om strekket er størst i toppen der tauene er tynnest, viser beregningen at marginene er så store at strømkreftene ikke vil slite av iletauene når de står i sjøen.

3.5.2 Nødvendig oppdrift til blåser og kuler

Strømkreftene vil presse hele ilen ned. For å holde toppen i vannflaten, må den festes til flytelegemer som har en samlet oppdrift som er minst like stor som de største vertikale kreftene i ilen (Ftz). Blir Ftz større enn oppdriften trekkes flytelegemene under vann. Tar en som eksempel Iletau 1, ser en fra Tabell 16 at det trengs en oppdrift = 298 [N] når vanndypet er 880 [m] (L/D = 1.5) og strømhastigheten = 0.5 [knop]. Hvis strømhastigheten øker til 2 [knop], og den totale oppdriften til flytelegemene = 1616 [N], så ser en fra Fig 17 og Tabell 16 at toppen av ilen vil trekkes ned og bli liggende 528 [m] over bunnen (L/D = 2.5). Dette betyr at flytelegemene blir trukket ned på 352 meters dyp. På dette dypet vil trykket være ca. 37 [bar] (36 [bar] + 1 [atm]). 1 [bar] er trykket av en 10 [m] høy søyle av ferskvann og er tilnærmet lik 1 atmosfæres [atm] trykk. I sjøvann som har en større egenvekt enn ferskvann vil trykket være 2 - 3 % høyere. Hvis flytelegemene er luftfylte blåser vil et ytre trykket. Hvis en antar konstant temperatur, kan denne sammenhengen mellom volum (V) og trykk (P) skrives som:

$$P_0 V_0 = P_{dyp} V_{dyp} \tag{1.20}$$

Hvis blåsene var fylt med 1 [bar] lufttrykk, vil volumet ved 352 meter da bli:

$$V_{352} = (P_0 / P_{352}) V_0 = (1/37) V_0 = 0.027 V_0$$
(1.21)

På dette dypet vil dermed blåsenes volum være redusert med 97%! Blåsene er med andre ord fullstendig klappet sammen og uten verdi som oppdriftslegemer. I Fig. 28 som er hentet fra Lien et. al. (2001) vises resultater av beregninger av det effektive oppdriftsvolumet til en blåse på 200 [liter] som trekkes under ned til 20 [m].

Fig. 28

Effektiv oppdrift som funksjon av neddykking i sjøvann for en 200 [liter] blåse med 1 [bar] lufttrykk (Lien et. al., 2001)

Som figuren viser har blåsen på 10 [m] dyp mistet halve volumet og dermed halve oppdriften. Med et lufttrykk i blåsen på 1.5 [bar] kan den synke ned til 5 [m] dyp før volumet begynner å minke. Figuren viser også at volumet/oppdriften avtar hurtig i starten av nedsynkingen. Har man en blåse som ligger nesten helt neddykket, og strømkreftene på ilen øker slik at blåsen trekkes ned, så vil volumet, og dermed oppdriften, raskt bli mindre og akselerere nedsynkingen av ilen.

Disse to forholdene illustrerer viktigheten av følgende forholdsregler:

- Luftfylte blåser bør ha et så høyt overtrykk som mulig
- Luftfylte blåser bør alltid kompletteres med trålkuler eller andre flytelegemer som tåler høye trykk
- Hvis en likevel baserer oppdriften bare på luftfylte blåser, bør størrelsene være slik at de har en reserveoppdrift på 40% i forhold til den nødvendige oppdrift ved maksimale strømkreften (Lien, et. al., 2001).

En vanlig sammensetning av oppdriften for Iletau 1 er å benytte 20 stk 8" trålkuler sammen med enten 2 stk A3 (60") eller 2 stk A4 (75") blåser. Dette gir en total oppdrift på henholdsvis 1924 N (196 Kp) og 2924 N (298 Kp) som i det etterfølgende er benevnt som O1 og O2. I de følgende figurene, Fig. 28 – 30, er Ftz for iletauene vist som funksjon av hastigheten for de 3 L/D-forholdene. De to oppdriftene (O1 og O2) er markert med horisontale stiplede linjer.

Fig. 29 Vertikal kraft i toppen av Iletau 1-4. L/D = 1.5

Som en ser av Fig. 28 vil den korteste ilen (Iletau 3) på grunnest vann klare seg med oppdriften O1 opp til 2 knops strøm, mens de lengste ilene (Iletau 1 og 2) på dypest vann dras under ved 1.3-1.35 knop når det brukes O1 oppdrift, og under 1.6 – 1.65 knop når O2 brukes.

Hvis forslaget om 40% reserveoppdrift legges til grunn, reduseres tolerabel strømhastighet til 1.7 [knop] for Iletau 3 når O1 brukes. Brukes O2 vil Iletau 3 tåle over 2 [knop] strøm. For Iletau 1 og 2 reduseres tolerabel strømhastighet til 1 [knop] med bruk av O1. Brukes O2 er tolerabel strømhastighet ca. 1.3 [knop].

Fra Fig. 30 og 31 ser en at når de lengste iletauene brukes på grunnere vann vil presset fra strømmen avta og redusere behovet for mye oppdrift. Fra Fig. 30 ser en at Iletau 1 og 2 tåler henholdsvis 1.8 og 1.7 knops strøm med O1 oppdrift på 660 meters dyp.

Reduseres dypet ytterligere (Fig. 31) ser en at Iletau 1 og 2 tåler mer enn 2 knops strømhastighet med oppdriften O1.

Fig. 30 Vertikal kraft i toppen av Iletau 1-4. L/D = 2.0

Fig. 31 Vertikal kraft i toppen av Iletau 1-4. L/D = 2.5

Som en ser av Fig. 28-30 så endrer Ftz seg sterkt med strømhastigheten. Ftz vil også variere med dypden (D), L/D-forholdet og diameterne til tauene som ilen består av.

For å kunne estimere nødvendig oppdrift for en vilkårlig ile i en gitt strømhastighet og dyp, er Ftz gjort dimensjonsløs med hensyn på de størrelsene som er nevnt ovenfor:

$$Ftz' = \frac{Ftz}{K}$$

hvor

$$K = \frac{d \cdot D}{\sqrt{\left(\frac{L}{D}\right)^2 - 1}}$$

og

$$\overline{d} = \sum_{i=1}^{n} d_i \cdot L_i / \sum_{i=1}^{n} L_i = \text{midlere diameter til hele ilen}$$

De dimensjonsløse verdiene for Iletau 1 - 4 er midlet og presentert i Fig. 31. Ønsker en å finne et estimat på nødvendig oppdrift for en gitt ile på et gitt dyp i en gitt strøm, så kan en regne ut *K* og multiplisere det med den dimensjonsløse verdien som kan tas ut av Fig. 31. De endelig verdiene bør som tidligere nevnt økes med ca. 40% for å sikre en god margin mot neddragning og kollaps.

Fig. 32 Dimensjonsløs vertikal kraft i toppen av iletau

3.5.3 Belastning på dregger og anker

Dreggen har som hovedformål å holde garnlenka på plass. Kreftene som vil forsøke å flytte dreggen kommer fra garnlenken og fra ilen. Kreftene fra ilen vil ha en horisontal og en vertikal komponent. Den vertikale bidrar til å lette dreggen fra bunnen og dermed redusere dreggens holdekraft som skal motvirke den horisontale kraftkomponenten fra ilen (og garnet). Generelt vurdert bør derfor den vertikale komponenten bør være så liten som mulig.

3.5.4 Lengde av synketau

Når strømhastigheten = 0 knop vil flytetauet flyte opp og danne en bukt. Avstanden fra bukta opp til overflaten vil være avhengig av lengden av synketau i forhold til den totale lengden av iletauet og forholdet mellom oppdriften og synkevekten i de respektive delene. Avstanden er presentert som en relativ størrelse i forhold til dybden i Fig. 32.

Fig. 33 Flytetauets avstand til overflaten når det brukes ulike lengder av synketau Negativ verdi angir at toppen ligger under overflaten

Verdiene er tatt fra beregningsresultatene for Iletau 1 - 6, og presentert som en funksjon av forholdet mellom lengde av synketau (Ls) og hele iletauet (L) for hvert av iletauene. Som en ser av figuren vil en for samme Ls/L ha litt variasjon i avstanden, alt etter dimensjoner og materialegenskaper til de enkelte linene.

Hvis vi antar at de fleste iletau ikke er kortere enn 1.5D, og ikke lengre enn 2.5D, ser en fra figueren at synketauet bør være over 50% av ilelengden for at flytetauet ikke skal ligge å flyte i overflaten.

For $L_s/L = 0.5$ og L/D = 2.5 ligger flytetauet i overflaten, mens det ved L/D = 2 ligger ca. 16% av dybden under. For D = 570 m blir det en avstand på 91 m.

Positive verdier av Avstand / Dyp – forholdet angir at flytetauet vil ha en bukt som når opp til overflaten. Økende positive verdier indikerer at større og større deler av flytetauet vil ligge å flyte i overflaten.

🕥 SINTEF

4 REFERANSER

- Bourget, P.-L. and Marichal, D., *Remarks about variations in the drag coefficient of circular cylinders moving through water*. Ocean Engineering, 1990. **17**(6): p. 569-585.
- Brørs, B., *Numerical modeling of flow and scour at pipelines*. Journal of Hydraulic Engineering, 1999. **125**(5): p. 511-523.
- Chubarov, S.N., [The effect of hydrodynamic forces on wires and the choice of wire for high speed and deep-sea trawling] In Russian. Rybnoe khozyaistvo Moskva, 1962. **38**(5): p. 45-49.
- Ferro, R.S.T. and Hou, E.H., A Selected Review of Hydrodynamic Force Coefficient Data on Stranded Wires Used in Fishing Gear. Scottish Fisheries Research Report, 1984(31).
- Lien, E., Fredheim, A., Sunde, L. M., *Fortsatt produksjon i en tynn tråd? Stor havaririsiko i norske skjellanlegg.* Norsk Fiskeoppdrett, 2001, **1**: p. 34-37.

Appendix

Bilder fra forsøkene i strømningstanken I Hirtshals, Danmark

Foto	1:	Test 500	Blåse, 66% av kapasitet, 0.00 knop
Foto	2:	Test 503	Blåse, 66% av kapasitet, 0.45 knop
Foto	3:	Test 506	Blåse, 66% av kapasitet, 1.05 knop
Foto	4:	Test 509	Blåse, 66% av kapasitet, 1.65 knop
Foto	5:	Test 1100	Garn, vertikalt, 0.0 knop
Foto	6:	Test 1103	Garn, vertikalt, 0.5 knop
Foto	7:	Test 1106	Garn, vertikalt, 1.1 knop
Foto	8:	Test 1109	Garn, vertikalt, 1.7 knop
Foto	9:	Test 1203	Garn, skrått, 0.5 knop
Foto	10:	Test 1206	Garn, skrått, 1.1 knop
Foto	11:	Test 3000	Flytetau, 0.57 knop

Foto 1 Blåse A3 (60''), 66% kapasitet, 0.00 knop

Foto 2 Blåse A3 (60''), 66% kapasitet, 0.45 knop

Foto 3 Blåse A3 (60''), 66% kapasitet, 1.05 knop

Foto 4 Blåse A3 (60''), 66% kapasitet, 1.65 knop

Foto 5 Garn, 0.00 knop

Foto 6 Garn, 0.50 knop

Foto 7 Garn, 1.10 knop

Foto 8 Garn, 1.70 knop

Foto 11 Flytetau 40 mm, 0.57 knop

Foto 9 Garn, 0.50 knop

Sammenligning mellom SFH-program og Riflex.

En line kan være sammensatt av et eller flere segment. Hvert segment har unike materialegenskaper, og er igjen inndelt i element. I *Riflex* benyttes *stavelement* (rette element uten kurvatur), mens *SFH-program* benytter *kjettingline-element* (element med kurvatur som en kjettingline).

Iletau 1 som er benyttet i sammenligningen er sammensatt av 5 forskjellige tau som hver har forskjellige egenskaper.

Tabell B1 Iletau 1 - L = 1320 m, Dyp = 570 m, V = 1.0 knop, $C_n = 1.2$, $C_t = 0.03\pi$, $C_s = 0.0$ SFH-program Riflex Supernode Node X (m) Z (m) X (m) Z (m) 1 (Bunn) 1 0 0 0.00 0.00 0.97 0.25 0.97 2 0.25 2 106.94 26.79 106.95 26.77 111 221 213.97 53.38 213.99 53.33 331 321.00 79.96 321.02 79.89 441 428.01 106.52 428.04 106.43 3 551 535.02 133.08 535.05 132.97 661 641.38 162.22 641.42 162.10 197.49 771 745.82 197.61 745.85 846.92 241.53 846.94 241.43 881 4 941.70 991 297.67 941.71 297.60 1101 1024.52 370.24 1024.50 370.20 5 1211 1084.08 462.46 1084.01 462.45 1320 1105.78 569.00 569.00 1105.70

1105.79

570.00

1105.70

570.00

Beregnet geometrien til Iletau 1 er vist i Tabell B1.

Supernode = Knutepunkt mellom segment Node = Knutepunkt mellom element Elementlengde = 1.00 m

1321

6 (Topp)

	SFH-program	Riflex
Strekk i topp:	528.9 N	529.5 N
Strekk i bunn:	737.7 N	737.8 N